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SOLITONS AND PARTICLE BEAMS*

J. J. Bisognano
Continuous Electron Beam Accelerator Facility,
12000 Jefferson Avenue, Newport News, VA 23606

ABSTRACT

Since space charge waves on a particle beam exhibit both dispersive and
nonlinear character, soliton-like behavior is possible. Some theoretical aspects
of dispersive, nonlinear wave propagation in high brightness beams are dis-
cussed. Numerical examples for realizable beams are presented, and issues for
future studies are noted.

INTRODUCTION

Space charge forces can produce longitudinal density waves in low mo-
mentum spread, charged particle beams.! For a uniform beam of radius a
transported in a perfectly conducting beampipe of radius b, the propagation
is nondispersive in the linear, long wavelength approximation. The wave veloc-
ity vp 1s
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where w is the mode frequency for wave number k, e is the electron charge, g is
the unperturbed linear particle density, g = 1 +2 logd/a, € is the permittivity
of free space, and m is the mass of the beam particles. However, for large
density perturbations nonlinearity cannot be ignored, and for short wavelengths
(small compared to the beampipe dimension) the propagation is dispersive with
the wave velocity dependent on wavelength. For many physical systems? this
combination of nonlinearity and dispersion leads to solitary waves and solitons.
In fact, this is the case for the illustrative particle beam configuration discussed
in this paper.

SOLITARY WAVES AND SOLITONS

Nonlinearity in wave propagation typically leads to steepening phenomena.
For example, consider the simple® wave equation

ur+(1+u)u,=0 (2)
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which has the implicit solution
ule, 1) = f(o — (1 + w)t) 3)

where f is an arbitrary differentiable function. Note the velocity, (1 + u), de-
pends on the amplitude, and, in particular, higher amplitudes propagate faster.
If f describes a localized distribution, the peak value will tend to overtake lower
values, and steepening and breaking of the pulse will result. On the other hand,
if the velocity depends strongly on wavelength (dispersion), a localized distri-
bution spreads as it propagates. A solitary wave results when the nonlinear
steepening is canceled by the dispersive spreading, yielding a localized distur-
bance which propagates without distortion. Since solitary waves of different
heights will generally travel with different velocities, collisions can occur. The
term soliton describes solitary waves which maintain their identity and shape
after collision.

SPACE CHARGE FORCES

For a beam in a beampipe, the longitudinal force F' generated by longitu-
dinal density variations is described by
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in the long wavelength limit for density A. In k-space, the spatial Fourier
transform F o tkA. More generally, the Green’s function for a cylindrically
symmetric distribution in a cylindrical symmetric pipe is
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where z,, is the n*® zero of the Bessel function Jy. Note that for small & <<
(2n/b), ik behavior dominates.

Consider a distribution of the form Jy(z;0/b)et**. In a linearized fluid
model, this function describes a perturbation eigenmode of a uniform beam
filling the beampipe. The underlying force law is modified from

ik
Lk — ———— 6
ik 1+ ak? (6)
where o = b?/z%. The phase velocity
v
£ (7)
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where the g implicit in v, is now a geometric factor of order unity, and the
propagation has become dispersive. On expanding the denominator of the right
side of relation (6) for small a, we note that a third derivative term (—ik?) is
added to the first derivative term (ik). This is suggestive of the structure of
the Kortweg-DeVries (KdV) equation, which exhibits soliton behavior.

1-D NONLINEAR FLUID MODEL

As a first step in understanding the interplay of nonlinearity and dispersion
for space charge dominated beams, we analyze a 1-D nonlinear cold fluid model
of a uniform beam with the force law given in relation (6). Admittedly, some
possibly important transverse effects may be lost. With vp = 1, the fluid
equations are

St ) = ®)

V— = ——— (9)
n{z,t) = no + ny(z, 1) (10)
~ ol (1)

At this point we can parallel Davidson’s discussion of ion-acoustic solitary
waves,! and look for solutions of the form n;(gz — wt), v(gz — wt), etc. which
roll-off at oo, Equations (8)-(11) imply that
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where ' denotes differentiation. The resulting first order equation (14) is easily
solved numerically for @, n, and v to yield the pulse shape of the self-consistent
solitary waves as a function of the parameter w/q. The peak value of & is given
by

Bpeak = 2 (3 _ 1) (15)

q
and the peak density is given by
o
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When w/q = 2, ® = 2, and the density n becomes singular, indicating breaking.

A multiple time scale analysis of these fluid equations with (w/g) as the
small expansion parameter yields the KdV equation as the lowest approxima-
tion. The KdV soliton, however, does not exhibit breaking. This difference for
large (w/q) is traceable to the weaker high frequency dispersion associated with
the

k
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behavior of the space charge force versus the
k— ak’ (18)

behavior implicit in the KdV equation.

CONCLUSIONS

A simple, 1-D model of longitudinal space charge waves exhibits solitary
waves together with breaking at large amplitudes. Clearly, this analysis rep-
resents only a first step in understanding, and many questions remain open.
Of most importance are the complications introduced by the transverse dis-
tribution and betatron oscillations. Although Jo(z1p/b)e’** provides a self-
consistent mode for the linearized equations, this transverse distribution is not
self-consistent for the nonlinear system. The full Green’s function, with the
infinite sum exhibited in equation (5), needs to be addressed. Also, the as-
sumption of transport of a high current beam of the same dimension as the
beampipe simplified the mathematics (collapsing the infinite sum), but it is
not practical experimentally. Wall resistance and the associated slow growing
instability would complete the picture.

Whether these solitary waves are indeed solitons is not clear, even in the
1-D model presented. Whitham* has studied a similar force law in a model
of water waves and found preservation of wave shape after the collision of two
such localized pulses. He also found some interesting phenomena associated
with breaking. Both one and two dimensional simulations would be valuable in
investigating these issues more thoroughly.

The scaling of possible experiments is set by the parameter vp given in
equation (1). For example, breaking occurs when w/q = 2 in units of vp, and
the solitary wave velocity lies between v, and 2vp. Low energy (8 = 0.3)
electron beams® found in high-space-charge transport experiments can take
values of v, approaching 107 m/s. Since dispersive effects are expected for
pulse lengths of the order of the beampipe radius, typically centimeters, it
appears that several meters of transport may be sufficient to observe some of
the phenomena discussed. Ion storage rings may also offer some possibilities,
although the microwave instability could be a problem.
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